ELECTRICAL / MECHANICAL APPLICATION FORMULAS

OHMS LAW

Volts (E) = Amps (I) x Ohms (R)
Amps (I) = Volts (E) / Ohms (R)
Ohms (R) = Volts (E) / Amps (I)
R=Ohms, E=Volts, I=Amperes

POWER - AC CIRCUITS
Eff. = Efficiency, PF = Power Factor, KW = Kilowatts, HP = Horsepower

Efficiency =	746 x Output HP	3ø KW	Volts x Amps x PF x 1.732
	Input Watts		1000
$3 \varnothing$ Amps $=$	$746 \times$ HP	$3 ø$ Eff. =	$746 \times$ HP
			$1.732 \times \text { Volts x Amps x PF }$
$3 ø \mathrm{PF}=$	Input Watts	$1 \varnothing \mathrm{KW}=$	Volts x Amps x PF
	Volts x Amps x 1.732		1000
$1 ø \text { Amps = }$	$746 \times$ HP	$1 ø$ Eff. =	746 x HP
	Volts x Eff. x PF		Volts x Amps x PF
$1 ø \mathrm{PF}=$	Input Watts	HP (3ø) =	Volts x Amps x $1.732 \times$ Eff. x PF
	Volts x Amps		746
$\operatorname{HP}(1 ø)=$	Volts x Amps x Eff. x PF	$1 \mathrm{KW}=1000$ Watts	
	\longleftarrow		

POWER - DC CIRCUITS

Eff. = Efficiency, HP = Horsepower

MECHANICAL

Torque in lb. ft., RPM=Revolutions Per Minute, HP = Horsepower

Torque	$=$	HP x 5250	HP	$=$	Torque X RPM
		\longleftarrow			
		RPM			
		Result is lb.ft. Multiply by 12 for lb.in.			5250
1 HP	$=$	36 lb.in. @ 1750 RPM	1 HP	$=$	$3 \mathrm{lb} . \mathrm{ft}$. @ 1750 RPM

FAN AND BLOWER MOTORS

CPM = Cubic Feet per Minute, Pressure in lb. / sg. ft., Eff. = Efficiency

$$
\mathrm{HP}=\frac{\text { CFM x Pressure }}{33000 \mathrm{x} \text { Eff. }}
$$

PUMP MOTORS

GPM = Gallons per Minute, S.G. = Specific Gravity, Eff. = Efficiency of Pump
$\mathrm{HP}=\underset{3960 \text { x Eff. }}{ }$

$$
\text { Head in Feet }=2.31 \text { P.S.I.G. }
$$

